

1	Molecular distribution and stable carbon isotopic compositions of
2	dicarboxylic acids and related SOA from biogenic sources in the
3	summertime atmosphere of Mt. Tai in the North China Plain
4	
5	
6	Jingjing Meng ^{1,3} , Gehui Wang ^{2,3,4*} , Zhanfang Hou ^{1,3} , Xiaodi Liu ¹ , Benjie Wei ¹ , Can Wu ³ ,
7	Cong Cao ³ , Jiayuan Wang ³ , Jianjun Li ³ , Junji Cao ³ , Erxun Zhang ¹ , Jie Dong ¹ , Jiazhen Liu ¹
8	
9	
10	
11	
12	
13	
14	¹ School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
15	² Key Laboratory of Geographic Information Science of the Ministry of Education, School
16	of Geographic Sciences, East China Normal University, Shanghai 200062, China
17	³ State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry
18	and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075,
19	China
20	⁴ School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an
21	710049, China
22	
23	*Corresponding author: Prof. Gehui Wang
24	E-mail address: wanggh@ieecas.cn, or ghwang@geo.ecnu.edu.cn
25	
26	
27	

28	Abstract: Molecular distributions and stable carbon isotopic ($\delta^{13}C$ values) compositions of
29	dicarboxylic acids and related SOA in $PM_{2.5}$ aerosols collected on a day/night basis at the
30	summit of Mt. Tai (1534 m a.s.l) in the summer of 2016 were analyzed to investigate the
31	sources and photochemical aging process of organic aerosols in the forested highland region
32	of North China Plain. The molecular distributions of dicarboxylic acids and related SOA are
33	characterized by the dominance of oxalic acid (C ₂), followed by malonic (C ₃), succinic (C ₄)
34	and azelaic (C ₉) acids. The concentration ratios of C_2/C_4 , diacid-C/OC and C_2 /total diacids
35	are larger in daytime than in nighttime, suggesting that the daytime aerosols are more
36	photochemically aged than those in nighttime due to the higher temperatures and stronger
37	solar radiation. Both ratios of C_2/C_4 ($R^2 \ge 0.5$) and C_3/C_4 ($R^2 \ge 0.5$) correlated strongly with the
38	ambient temperature, indicating that SOA in the mountaintop atmosphere are mainly derived
39	from the photochemical oxidation of local emissions rather than long-range transport. The
40	mass ratios of C ₉ /C ₆ , C ₉ /Ph, Gly/mGly and the strong linear correlation of major
41	dicarboxylic acids and related SOA with biogenic precursors further suggest that aerosols in
42	this region are mainly originated from biogenic sources (i.e., tree emissions).
43	C2 concentrations correlated well with aerosol pH, indicating that particle acidity favors
44	the organic acid formation. The stable carbon isotopic compositions (δ^{13} C) of the
45	dicarboxylic acids are higher in daytime than in nighttime with the highest value
46	$(-16.5\pm1.9\%)$ found for C ₂ and the lowest value $(-25.2\pm2.7\%)$ found for C ₉ . An increase in
47	$\delta^{13}C$ values of C_2 along with increases in C_2 /Gly and C_2 /mGly ratios was observed, largely
48	due to the isotopic fractionation during photochemical degradation of the precursors.
49	
50	Keywords: Dicarboxylic acids; Glyoxal and methylglyoxal; Secondary organic aerosols
51	(SOA); Biogenic sources; Formation mechanisms
52	
53	
54	
55	

56 **1. Introduction**

57	Secondary organic aerosols (SOA) accounts for a substantial fraction (20-90%) of the
58	total $PM_{2.5}$ mass in the troposphere, and up to 80% of which are water-soluble (Hallquist et
59	al., 2009; Kroll and Seinfeld, 2008). Due to the low vapor pressures and high hygroscopicity
60	(approximately less than 10 ⁻⁷ Pa) (Bilde et al., 2015; Ehn et al., 2014), dicarboxylic acids
61	and related compounds are ubiquitously found in atmospheric waters and particles
62	(Kawamura and Bikkina, 2016; Sorooshian et al., 2007a). Because of the water-soluble and
63	hygroscopic properties, dicarboxylic acids and related compounds play important roles in
64	atmospheric aqueous chemistry and influence radiative forcing of aerosols via acting as
65	cloud condensation nuclei (CCN) (Hoque et al., 2017; Wang et al., 2016; Zhang et al.,
66	2016).
67	Although they can be emitted directly from sources such as incomplete combustion of
68	fossil fuels (Kawamura and Kaplan, 1987) and biomass burning (Kawamura et al., 2013a, b;
69	Narukawa et al., 1999), atmospheric dicarboxylic acids and related compounds are largely
70	produced by photochemical oxidation of unsaturated fatty acids, PAHs (Kawamura et al.,
71	1996), cyclic alkanes and other compounds (Kawamura and Usukura, 1993). Oxalic acid
72	(C_2) is the smallest and the most abundant dicarboxylic acid (Wang et al., 2009, 2015).
73	Modeling studies and cloud measurements have suggested that C ₂ are largely produced from
74	aqueous-phase oxidation of less oxygenated organic precursors such as glyoxal (Gly),
75	methyglyoxal (mGly) and pyruvic acid (Pyr) in clouds or wet aerosols as well as the
76	photochemical breakdown of longer-chain dicarboxylic acids (Wang et al., 2012, 2015).
77	There is a growing consensus on highlighting the significance of oxalic acid and related
78	SOA formation from the photochemical oxidation of anthropogenic/biogenic volatile
79	organic compounds (VOCs) via the aqueous phase in clouds or liquid water content
80	(LWC)-enriched aerosols from many field observations and laboratory experiments as well
81	as modeling studies (Bikkina et al., 2017; Cheng et al., 2017; Ervens et al., 2014; Fu et al.,
82	2008; Lim et al., 2005; Miyazaki et al., 2009; Mochizuki et al., 2017). A ubiquitous layer of
83	dicarboxylic acids was found above the clouds by aircraft measurements in US, indicating

84	that organic acids are important CCN in the free troposphere (Sorooshian et al., 2007a, b).
85	Compared to the aerosols in lowland areas, alpine aerosols have a more important influence
86	on cloud formation, because they are more accessible to clouds due to higher elevation. Mt.
87	Tai is an independent peak located in the center of the North China Plain (NCP), one of the
88	severest air- polluted regions in the world (Wang et al., 2009; Yang et al., 2017). A few
89	studies have been performed on the molecular distributions and sources of dicarboxylic
90	acids at Mt. Tai, but most of them were conducted during the wheat straw burning period
91	(Kawamura et al., 2013a, b; Zhu et al., 2018), and very few information on dicarboxylic
92	acids in Mt. Tai during July and August is available when biogenic activity of vegetation is
93	dominant. Therefore, it is necessary to investigate the chemistry of SOA during the typical
94	summer season in this highland area.
95	The stable carbon isotopic composition (δ^{13} C) of specific organic acids can provide
96	very useful information on the sources and photochemical aging of organic aerosols,
97	because the isotopic fractionation of carbon occurs upon chemical reactions or phase transfer
98	(Pavuluri and Kawamura, 2016; Zhang et al., 2016). To our best knowledge, the stable
99	carbon isotopic compositions of dicarboxylic acids and related SOA in mountainous regions
100	have not been reported before. In the current work, we first investigated the diurnal
101	variations in molecular distributions and stable carbon isotopic compositions of dicarboxylic
102	acids and related compounds. Then we discussed the impact of temperature (T), relative
103	humidity (RH), particle acidity (pH_{IS}), liquid water content (LWC) and O_3 concentration on
104	oxalic acid and related SOA to explore their sources and formation mechanism in the
105	forested highland of the North China Plain.
106	2. Experimental section
107	2.1 Aerosol sampling
108	PM _{2.5} samples were collected at the Meteorological Observation Station of Mt. Tai,

- 109 which is located at the summit of Mt. Tai (36.25° N, 117.10°E; 1534 m a.s.l.) in the North
- 110 China Plain (Fig. 1). About 80% of the mountainous land is covered by vegetation known to
- 111 comprise 989 species, which is densely wooded in summer (Fu et al., 2010). PM_{2.5} samples

- 112 were collected from July 20 to August 20, 2016 each lasting for 12h on a day/night basis
- 113 using a mid-volume air sampler (KC-120H, Qingdao Laoshan Company, China) equipped
- 114 with prebaked (450°C, 8 h) quartz fiber filters (Whatman, USA) at an airflow rate of 100 L
- 115 min⁻¹. The daytime samples were collected from 8:00 to 20:00, while nighttime samples
- 116 were collected from 20:00 to 8:00 of the next day. Field blank samples were also collected
- 117 by mounting the blank filter onto the sampler for 15 min without sucking any air before and
- after the campaign. A total of 57 samples (daytime: 28; nighttime: 29) were collected during
- 119 the campaign. After sampling, each filter was sealed in an aluminum foil bag and stored at
- 120 –20°C prior to laboratory analyses. Moreover, the concentration of ozone was
- 121 simultaneously monitored at the side by an UV absorption analyzer (Model 49C, Thermo
- 122 Electron Corporation).

123 2.2 Chemical analyses

124 2.2.1 Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

125 Dicarboxylic acids, ketocarboxylic acids and a-dicarbonyls in PM2.5 were determined using the method described by previous studies (Kawamura et al., 1996; Meng et al., 2013, 126 127 2014). Briefly, one half of the filter was cut into pieces and extracted with pure Milli-Q 128 water under ultrasonication for three times each for 15 min. The water extracts were 129 concentrated to near dryness and then reacted with 14% BF₃/n-butanol at 100°C for 1 hr to 130 form butyl esters/dibutoxy acetals. After derivatization, n-hexane was added and washed 131 with pure water for three times. Finally, the hexane layer was concentrated to 200 µL and 132 determined using a capillary gas chromatography (GC; HP 6890) coupled with a 133 split/splitless injector and a flame ionization detector (FID). The GC oven temperature was programmed from 50 (2 min) to 120°C at 15°C min⁻¹, and then to 300 at 5°C min⁻¹ with a 134 final isothermal hold at 300°C for 16 min. Peak identification was performed by comparing 135 136 the GC retention time with that of authentic standards and confirmed by mass spectrum of 137 the sample using a GC-mass spectrometer (GC-MS). Recoveries of the target compounds 138 were 80% for oxalic acid and 85% to 110% for other species. The target compounds in the

- 139 field blank samples were lower than 4% of those in the ambient samples. Data presented
- 140 here were corrected for both field blanks and recoveries.

141 2.2.2 Stable carbon isotope composition of dicarboxylic acids and related SOA

- 142 The stable carbon isotopic compositions (δ^{13} C) of shorter-chain dicarboxylic acids and
- 143 related SOA were measured using the method developed by Kawamura and Watanabe
- 144 (2004). Briefly, the δ^{13} C values of the derivatized samples above were determined by gas
- 145 chromatography-isotope ratio mass spectrometry (GC-IR-MS; Thermo Fisher, Delta V
- 146 Advantage). The δ^{13} C values were then calculated for free organic acids using an isotopic
- 147 mass balance equation based on the measured δ^{13} C values of derivatives and the derivatizing
- 148 agent (BF₃/n-butanol) (Kawamura and Watanabe, 2004). To ensure the analytical error of
- 149 the δ^{13} C values less than 0.2 ‰, each sample was measured three times. The δ^{13} C data
- 150 reported here are averaged values of the triplicate measurements.
- 151 2.2.3 Elemental carbon (EC), organic carbon (OC), inorganic ions, water-soluble
- 152 organic carbon (WSOC), aerosol liquid water content (LWC), and particle in-situ pH
- 153 (pH_{IS}).

Briefly, EC and OC in the PM2.5 samples were determined by using DRI Model 2001 154 155 Carbon Analyzer following the Interagency Monitoring of Protected Visual Environments 156 (IMPROVE) thermal/optical reflectance (TOR) protocol (Chow et al., 2004). As for the 157 measurement of inorganic ions and WSOC, an aliquot of the sample filters was extracted 158 with 30 mL Milli-Q water using an ultrasonic bath for three times each for 15min, and 159 filtered through PTFE filters to remove the particles and filter debris. The water extract was 160 then separated into two parts. One part was analyzed for inorganic ions using an ion chromatography (Dionex 600, Dionex, USA), and the other part of the water extract was 161 162 used to determine WSOC using a Total Carbon Analyzer (TOC-L CPH, Shimadzu, Japan). 163 As for the calculation of aerosol liquid water content (LWC) and particle in-situ pH (pH_{IS}), the Aerosol Inorganic Model (AIM) using a SO₄²⁻-NO₃⁻ - NH₄⁺-H⁺ system (AIM-II) were 164 165 employed (Li et al., 2013). 166

167 3 Results and discussion

168 **3.1 General description of chemical components in Mt. Tai**

- 169 The concentrations of dicarboxylic acids and related SOA, EC, OC, WSOC and
- 170 inorganic ions in PM_{2.5} samples from Mt. Tai are summarized in Table 1. During the
- 171 campaign the height of boundary layer at Mt. Tai was frequently reduced to ~600 m at night,
- 172 which kept the sampling site in the free troposphere at night. In contrast, the boundary layer
- 173 extended far above the mountaintop during the daytime (Zhu et al., 2018). However, as a
- 174 tracer of combustion source, EC concentration is very low and shows a similar level in the

175 day and night periods, suggesting that the impact of anthropogenic emissions from the

176 lowland region on the mountaintop atmosphere is insignificant. OC and WSOC in the PM_{2.5}

samples are higher in daytime than in nighttime (Table 1), largely due to the stronger

178 photochemical oxidation in daytime rather than the changes in the boundary layer heights.

179 OC/EC and WSOC/OC ratios are around 1.4 times higher in daytime than in nighttime (Fig.

180 4), indicating an enhancing SOA production due to the daytime photochemical oxidation

181 (Hegde and Kawamura, 2012).

182 The meteorological conditions in daytime can promote the secondary aerosol formation, resulting in higher concentration of SO_4^{2-} (13 ± 6.9µg m⁻³, Table 1) compared to that (9.6 ± 183 $3.7\mu g m^{-3}$) in nighttime (Kundu et al., 2010a). On the contrary, NO₃⁻ concentration is higher 184 in the nighttime $(4.2 \pm 2.3 \mu \text{g m}^{-3}, \text{ Table 1})$ than in the daytime $(3.0 \pm 2.1 \mu \text{g m}^{-3})$, which is 185 186 probably caused by the evaporative loss of NH₄NO₃ due to the higher daytime temperature (Table 1) (Pathak et al., 2009). Consequently, the concentrations of NH_4^+ also present higher 187 values in nighttime ($6.6 \pm 2.5 \mu \text{g m}^{-3}$, Table 1) compared to that in daytime ($5.3 \pm 2.9 \mu \text{g m}^{-3}$). 188 As shown in Table 1, the remaining four kinds of cations (K^+ , Na^+ , Ca^{2+} and Mg^{2+}), which 189 190 can be regarded as the key markers of primary sources, did not exhibit significant diurnal 191 variations, again suggesting that the effect of boundary layer heights is minor. In this work, 192 LWC and pH_{IS} are calculated by using AIM-II model, because both species cannot be directly measured. LWC exhibits higher concentrations $(94 \pm 100 \mu g m^{-3})$ in daytime than 193 that $(75 \pm 69 \mu \text{g m}^{-3})$ in nighttime (Table 1). In contrast, pH_{IS} shows lower values (-0.04 ± 0.5) 194

- 195 in daytime compared to that (0.4 ± 0.6) in nighttime (Table 1), indicating the daytime
- 196 aerosols are more acidic.

197 3.2 Molecular distributions of dicarboxylic acids and related SOA

- A homologous series of dicarboxylic acids (C_2-C_{11}), ketocarboxylic acids ($\omega C_2-\omega C_9$)
- and pyruvic acid), and α -dicarbonyls (glyoxal and methylglyoxal) in PM_{2.5} samples of Mt.
- 200 Tai were determined (Table 2). The molecular compositions of these compounds are
- 201 illustrated in Fig. 2.

Total dicarboxylic acids are 430 ± 282 ng m⁻³ (27–944 ng m⁻³, Table 2) in daytime, 202 around two times higher than those in nighttime $(282 \pm 161 \text{ ng m}^{-3}, 73-671 \text{ ng m}^{-3})$. The 203 average concentration levels $(354 \pm 239 \text{ ng m}^{-3})$ are lower than those in Asian lowland (e.g. 204 14 Chinese cities $(892 \pm 457 \text{ ng m}^{-3})$ (Ho et al., 2007); Chennai in India $(502.9 \pm 117.9 \text{ ng})$ 205 206 m^{-3}) (Pavuluri et al., 2010)) and elevated regions (e.g. Mt. Hua in central China (744 ± 340 ng m⁻³) (Meng et al., 2014); the central Himalayan in Nainital, India (430 ng m⁻³) (Hegde 207 208 and Kawamura, 2012)), but higher than those in the continental background area such as 209 Qinghai Lake in Tibetan Plateau $(231 \pm 119 \text{ ng m}^{-3})$ (Meng et al., 2013) and marine regions such as North Pacific (68 ng m⁻³) (Hoque et al., 2017) and the western North Pacific (99.2 \pm 210 211 86.4 ng m⁻³) (Boreddy et al., 2017).

212 Interestingly, we found that the levels of dicarboxylic acids are equivalent to those at Mt. Fuji in Japan in day and night (day: 424 ng m⁻³; night: 266 ng m⁻³) (Mochizuki et al., 213 214 2017), which are dominantly derived from the oxidation of biogenic VOCs such as isoprene and α -pinene in summer. Both mountains are located at the similar latitude in East Asia, and 215 216 the altitudes of the sampling sites at Mt. Tai and Mt. Fuji are almost the same. Thus, one 217 may expect that the emissions of biogenic VOCs at both sites during the same season are 218 similar. Moreover, O_3 level during the observation period in Mt. Tai is also similar to that at 219 Mt. Fuji, Japan ranging from a few ppb at night to about 60 ppb (Mochizuki et al., 2017) at 220 the noontime, which means that photochemical activity at both sites during the campaigns 221 are similar. Therefore, concentrations of dicarboxylic acids are comparable at both sites with 222 a similar diurnal difference.

223 At the Mt. Tai site, the concentrations of dicarboxylic acids in daytime were about two 224 times higher than in nighttime, which can be ascribed to the stronger photochemical 225 production of dicarboxylic acids and/or higher emissions of the precursors in daytime. As 226 shown in Fig. 2, oxalic acid (C_2) is the dominant species in Mt. Tai, followed by malonic 227 acid (C_3) , succinic acid (C_4) , and azelaic acid (C_9) during the day and night, respectively. 228 These four species account for 60, 12, 7.2, and 6.9% of the total dicarboxylic acids in the 229 daytime and 53, 11, 8.5, and 7.6 % of the total in the nighttime, respectively. The molecular 230 compositions in Mt. Tai is similar to that in other remote areas such as Mt. Fuji, Japan, Mt. 231 Hua and Qinghai Lake, China in the summer (Meng et al., 2013, 2014; Mochizuki et al., 232 2017), but different from that in urban regions where phthalic and/or tere-phthalic acids are 233 more abundant than C_9 because of higher emissions of anthropogenic precursors (e.g., 234 aromatics and plasticizers) (Cheng et al., 2015; He et al., 2014; Jung et al., 2010; Wang et al., 235 2002, 2017). 236 Ketocarboxylic acids are the major intermediates of aqueous phase photochemical 237 oxidation producing dicarboxylic acids in the atmosphere (Kawamura and Ikushima, 1993; Pavuluri and Kawamura, 2016), which are 43 ± 28 ng m⁻³ in the daytime and 37 ± 19 ng m⁻³ 238 239 in the nighttime, respectively, with glyoxylic acid (ωC_2) being the dominant ω -oxoacid, 240 followed by pyruvic acid (Pyr) and 3-oxobutanoic acid (ωC_3) (Table 2 and Fig. 2). Previous 241 studies have proposed that ωC_2 can be initially formed from photochemical oxidation of 242 glyoxal with OH radical and other oxidants in aqueous phase and then further oxidized into 243 oxalic acid (Rapf et al., 2017; Wang et al., 2012). In contrast to the diurnal variations of 244 dicarboxylic and ketocarboxylic acids, the concentrations of α -dicarbonyls exhibit higher 245 concentrations in nighttime than those in daytime (Fig. 2). Because α -dicarbonyls are the 246 major precursors produced from the photochemical oxidation of isoprene and other VOCs in 247 the atmosphere (Carlton et al., 2006, 2007), the opposite pattern suggests that the aerosol 248 aqueous phase oxidation in nighttime is impressed in comparison with that in daytime. The 249 concentrations of Gly are less than mGly, largely because of the stronger biogenic sources

- and the lower oxidation rate of mGly with OH radical in aerosol phase compared to Gly
- 251 (Cheng et al., 2013; Meng et al., 2013).
- 252 Temporal variations in concentrations of total dicarboxylic acids, ketocarboxylic acids 253 and α -dicarbonyls are illustrated in Fig. 3, along with the meteorological parameters. During 254 the whole sampling periods, the concentrations of total daicarboxylic acids and related SOA fluctuated significantly with a maximum (1060 ng m⁻³) on August 4 and a minimum (33 ng 255 256 m⁻³) on August 7. Our results showed that the levels of water-soluble organic compounds 257 decrease by 30-80% when it was rainy, suggesting that dicarboxylic acids and related SOA 258 can be removed efficiently by the wet precipitation, because these water-soluble compounds 259 are not only easily washed out but also can be efficiently removed by serving as cloud 260 condensation nuclei (CCN) during the wet deposition (Leaitch et al., 1996). Moreover, a 261 reduced secondary formation due to weaker solar radiation and a reduced biogenic emission during the rainy days are also responsible for the lowest concentrations of dicarboxylic acid 262 263 and related SOA. 264 **3.3 Biogenic versus anthropogenic and local versus long-range transport sources** Previous studies have proposed that C_2 , C_3 and C_4 are produced by the photochemical 265 266 degradation of longer-chain diacids, while C_3 is produced by photooxidation of C_4 in the 267 atmosphere (Hoque et al., 2017; Kawamura and Usukura, 1993; Kunwar et al., 2017). 268 Therefore, both ratios of C_2/C_4 and C_3/C_4 can be regarded as indicators of photochemical 269 aging of organic aerosols. The C_2/C_4 and C_3/C_4 ratios in the mountainous atmosphere are 8.0 270 ± 2.7 and 1.6 ± 0.6 , respectively, higher than aerosols freshly emitted from sources such as 271 vehicle exhausts (C₂/C₄: 7.1; C₃/C₄: 1.3) (Ho et al., 2006) and biomass burning plumes $(C_2/C_4: 5.0; C_3/C_4: 0.7)$ (Kundu et al., 2010b), but lower than photochemically aged aerosols 272 273 in remote regions such as a continental background site in Tibet Plateau (C_2/C_4 : 11±7.2; 274 C_3/C_4 : 2.2±1.3) (Meng et al., 2013) and the North and South Pacific (C_2/C_4 : 8.7; C_3/C_4 : 275 3.0)(Hoque et al., 2017). Compared with those in the nighttime, the higher ratios of C_2/C_4 276 and C_3/C_4 (Fig. 4) in the daytime again indicate that the photochemical modification of 277 aerosols is stronger. A few studies have found that when local sources are dominant over

278	long-range transport, both ratios of C_2/C_4 and C_3/C_4 would correlate strongly with the
279	ambient temperatures (Meng et al., 2013; Pavuluri et al., 2010). In the current work, the
280	ratios of C ₂ /C ₄ (R^2 >0.5) (Fig. 5a) and C ₃ /C ₄ (R^2 ≥0.5) (Fig. 5b) correlated well with the
281	ambient temperatures in both the daytime and the nighttime, clearly suggesting that
282	dicarboxylic acids and related SOA at the Mt. Tai during the campaign are mostly derived
283	from the local photochemical oxidation of BVOCs rather than long-range transport.
284	Aggarwal et al., (2008) found that diacid-C/OC and C ₂ /total diacids should increase in
285	daytime when local emission and photooxidation are more significant than long-range
286	transport. In the summit of Mt. Tai the daytime ratios of diacid-C/OC and C_2/total diacids
287	are $5.5 \pm 2.6\%$ and $60 \pm 7.7\%$, which are about 1.2 and 1.3 times higher than those in the
288	nighttime, respectively (Fig. 4), further indicating the stronger photochemical oxidation in
289	daytime and the dominance of local sources for the SOA production in the troposphere of
290	Mt. Tai.
291	Both ratios of C_9/C_6 and C_9/Ph can be used as indicators to qualitatively evaluate the
292	source strength of anthropogenic versus biogenic precursors for producing dicarboxylic
293	acids and related SOA (Jung et al., 2010), because C_6 and Ph are largely produced by the
294	oxidation of anthropogenic cyclohexene (Hatakeyama et al., 1987) and aromatic
295	hydrocarbons such as naphthalene (Kawamura and Ikushima, 1993), respectively. In
296	contrast, C ₉ is mainly produced by the oxidation of biogenic unsaturated fatty acids
297	containing a double bond at the C-9 position (Wang et al., 2010). As shown in Fig. 4, both
298	ratios of C_9/C_6 and C_9/Ph are higher in the daytime than those in the nighttime, which is
299	mainly attributed to the stronger biogenic activity of vegetation in daytime in the mountain
300	regions. The average values of C_9/C_6 (14 \pm 9.0) and C_9/Ph (7.2 \pm 2.2) at the mountaintop of Mt.
301	Tai are higher than those in urban regions such as Xi'an China (C_9/C_6 : 3.1; C_9/Ph :
302	5.6)(Cheng et al., 2013) and also higher than other mountainous in summer such as Mt.
303	Himalayan, India (C ₉ /C ₆ : 2.1; C ₉ /Ph: 0.2)(Hedge and Kawamura, 2012) and Mt. Fuji, Japan
304	$(C_9/C_6: 3.1)$ (Mochizuki et al., 2017). Model simulation (Fu et al., 2008) and field

305 observations (Meng et al., 2014) have suggested that the concentration ratio of particulate

306	Gly/mGly is about 1:5 when biogenic sources are predominant and is about 1:1 when
307	anthropogenic sources are predominant such as in urban areas. As shown in Table 3, the
308	ratios of Gly/mGly in the Mt. Tai atmosphere are 1:5.1 in daytime and 1:4.8 in nighttime,
309	further suggesting that Gly and mGly in the Mt. Tai samples are mostly derived from
310	biogenic sources. This result is in agreement with the high abundance of C9 relative to the
311	total dicarboxylic acids (7.2%), which is about two times higher than that (3.5%) in 14
312	Chinese megacities in the summer (Ho et al., 2007). Moreover, a trace amount of elemental
313	carbon (EC) was found for most of the samples (Table 1), suggesting that the impact of
314	pollutants derived from anthropogenic sources on the mountaintop atmosphere during the
315	campaign are negligible. Consequently, it can be concluded that the summertime SOA of Mt.
316	Tai are mainly derived from local photochemical oxidation of biogenic precursors rather
317	than long-range transport of anthropogenic precursors during the sampling period.
318	3.4 Production of dicarboxylic acids and related SOA from biogenic sources
319	A three-dimensional modeling study has proposed that 79% of oxalic acid is originated
320	from the photochemical oxidation of isoprene and other biogenic hydrocarbons in cloud
321	(Myriokefalitakis et al., 2011). Laboratory experiments and model simulations have
322	demonstrated that the photooxidaltaion of isoprene (Carlton et al., 2006, 2007; Huang et al.,
323	2011) and monoterpenes (Fick et al., 2003; Lee et al., 2006) can produce Gly and mGly via
324	reactions with OH radical and/or O_3 in the aerosol aqueous phase or the gas phase and
325	subsequently partition into cloud droplets, where both carbonyls are oxidized further by OH
326	radical to form oxalic acid (Lim et al., 2005; Tan et al., 2010).
327	In order to further ascertain the contribution of BVOCs to dicarboxylic acids and
328	related SOA during the high biological activity period in Mt. Tai, SOA tracers derived from
329	isoprene-, α -/ β -pinene- and β -caryophyllene in the PM _{2.5} samples collected at the Mt. Tai
330	site were determined. Their total concentrations (the sum of isoprene+ pinene+
331	caryophyllene derived SOA tracers) are 1.3 times higher in the daytime ($106 \pm 56 \text{ ng m}^{-3}$)
332	than those in the nighttime $(79 \pm 38 \text{ ng m}^{-3})$ (unpublished data), which is consistent with the
333	diurnal variation patterns of dicarboxylic acids, ketocarboxylic acids and WSOC (Tables 1

- and 2). Previous studies reported that 2-methylglyceric acid, which is an isoprene oxidation
- 335 product, and 3-hydroxyglutaric acid, which is α -/ β -pinene oxidation product, can serve as
- 336 organic precursors for the production of dicarboxylic acids and ketocarboxylic acids (Fu et
- al., 2013). As shown in Table 4, major dicarboxylic acids and related SOA (e.g. C₂, C₂, Gly
- 338 and mGly) correlated positively with isoprene oxidation products during daytime and
- nighttime (R>0.60, P<0.01), indicating that isoprene oxidation products can serve as
- 340 precursors for the production of oxalic acid via α-dicaronyls oxidation (Myriokefalitakis et
- al., 2011). Moreover, both α - β -pinene and caryophyllene oxidation products also presented
- 342 strong correlations with dicarboxylic acids and related SOA (R>0.55, P<0.01) (Table 4),
- 343 further highlighting the important contribution of BSOA to dicarboxylic acids and related
- 344 SOA in Mt. Tai during summer.
- 345 3.5 Effects of temperature, relative humidity, and O₃ concentrations on the formation

346 of oxalic acid and related SOA

347 Because oxidants such as OH radicals were not measured in Mt. Tai, O₃ is considered

348 here as an indicator of the total oxidant concentrations in this study. A significant linear

- 349 correlation of oxalic acid with O₃ concentrations is observed for the daytime samples
- 350 $(R^2=0.91)$, but no correlation $(R^2=0.05)$ was found for the nighttime samples (Fig.6a). Such a
- 351 phenomenon was also observed in Mt. Fuji, Japan (Mochizuki et al., 2017) and Beijing,
- 352 China (He et al., 2014). Additionally, C₂/ Gly, C₂/ mGly and C₂/total diacids ratios correlate
- 353 positively with O₃ concentrations in the daytime, but such correlations were not found in the
- 354 nighttime (Fig 8(a-c)). Mochizuki et al. (2017) have reported a robust correlation between
- 355 concentration ratios of oxalic acid to isoprene plus α-pinene (oxalic
- 356 acid/(isoprene+ α -pinene)) and O₃ concentrations in a large forest region of Mt. Fuji, Japan
- 357 in the daytime. In the curren work, BSOA tracers correlate strongly with O₃ concentrations
- in the daytime (R>0.6, P<0.01), but no correlation was found at night (Table 4). These
- 359 results suggest that the daytime oxalic acid and related SOA in the mountaintop of Mt. Tai
- 360 are largely derived from O_3 oxidation of BVOCs such as isoprene and α -pinene, while the

- 361 nighttime oxalic acid and related SOA might be primarily produced by NO₃ radical and
- 362 other oxidizing agents such as H₂O₂ (Claeys et al., 2004; Herrmann et al., 1999).
- 363 As shown in Table 4, nearly all of the detected BSOA tracers including
- 364 2-methylglyceric acid, 3-hydorxyglutaric acid and β -caryophyllinic acid exhibit a strong
- 365 correlation with the ambient temperature, largely due to the increased production of BSOA
- 366 from enhanced emissions of BVOCs under the higher temperature conditions. The BSOA
- 367 tracer concentrations are higher in daytime than in nighttime, largely due to more abundant
- 368 BVOC emissions because of stronger biogenic activity of vegetation during the daytime. In
- 369 addition, oxalic acid and C₂/total diacids ratios correlated strongly with temperatures (Fig.6b
- and Fig.8f), because higher temperature conditions can promote photochemical formation of
- 371 oxalic acid. Such a temperature dependence is also observed in other regions such as Mt.
- Hua (Meng et al., 2014) and Beijing (Wang et al., 2017) in China.

373 Online measurements, field observations and chamber studies (Cheng et al., 2017; Gao 374 et al., 2004; McNeill, 2015; Meng et al., 2014; Wang et al., 2012, 2017) have suggested that 375 oxalic acid is primarily derived from the acid-catalyzed heterogeneous oxidation of glyoxal 376 and related precursors in the aqueous phase. Here we investigate the impact of LWC and pH_{IS} on the formation of oxalic acid in Mt. Tai aerosols. As shown in Fig.6c, a strong linger 377 correlation between C₂ and SO₄²⁻ was found for the daytime (R^2 =0.89) and nighttime 378 379 $(R^2=0.76)$ samples, respectively, which is consistent with the measurements observed in 380 other mountainous region (Meng et al., 2014) and Chinese cities (Wang et al., 2002, 2010, 381 2012, 2017; Yu et al., 2005), indicating that oxalic acid and sulfate are formed via a similar 382 formation pathway such as in-cloud or aqueous-phase (Warneck, 2003). In this study, oxalic acid does not exhibit correlations with relative humidity (RH) and LWC (Fig.6d and 6e), but 383 presents a significant negative correlation with pH_{IS} ($R^2 > 0.60$) (Fig.6f), largely due to the 384 385 fact that acidic conditions can promote the formation of oxalic acid and their precursors. 386 Therefore, a robust negative correlation was obtained for pH_{IS} and the precursors of oxalic acid such as Gly, mGly and $\omega C_2 (R^2 > 0.50)$. A few studies have pointed out that aerosol 387 acidity are favorable for the formation of biogenic SOA (BSOA) derived from isoprene 388

389

390	converted to oxalic acid (Meng et al., 2014; Surratt et al., 2007, 2010). Our previous studies
391	have revealed that enhanced RH can reduce particle acidity (pH_{IS}) and is thus unfavorable
392	for oxalic acid formation by acid-catalyzed reactions occurring in the aerosol aqueous phase
393	(Li et al., 2013, 2018; Meng et al., 2014). RH is a key factor controlling the aerosol LWC
394	(Bikkina et al., 2017). Deshmukh et al. (2017) and Bikkina et al. (2017) also found that RH
395	and LWC correlated well with oxalic acid, indicating that humid conditions are favorable for
396	the aqueous phase formation of C_2 . Nevertheless, Zhang et al. (2011) pointed out that low
397	RH conditions can promote SOA yields via the oxidation of isoprene. Higher RH and LWC
398	can promote the partitioning of water-soluble semivolatile organic precursors of oxalic acid
399	(e.g., Gly and mGly) into the aerosol aqueous phase but can also suppress acid-catalyzed
400	formation of oxalic acid because of lower aerosol acidity due to dilution. Therefore, C_2 does
401	not present any correlations with RH or LWC in Mt. Tai.
402	3.6 Stable carbon isotopic composition of oxalic acid and related SOA
403	To further understand the formation mechanism of C_2 and related SOA, the stable
404	isotopic composition of major dicarboxylic acids and related SOA in the Mt. Tai aerosols
405	were investigated (Table 5). Generally, an increase in $\delta^{13}C$ values was observed with a
406	decrease in carbon numbers of dicarboxylic acids. The averaged $\delta^{13}C$ value (daytime:
407	$-15.8\pm1.9\%$; nighttime: $-17.2\pm1.7\%$) of C ₂ is higher than other dicarboxylic acid and
408	related SOA in the Mt. Tai atmosphere, and also higher than those observed in the urban
409	regions such as Xi'an, China (-22.7‰ to -22.0‰) (Wang et al., 2012) and Sapporo, Japan
410	(18.8±2.0‰) (Aggarwal and Kawamura, 2008) and the rural regions such as Morogoro,
411	Tanzania (18.3±1.7‰) (Mkoma et al., 2014), but lower than those (11.5±2.8‰) (Zhang et
412	al., 2016) at a background supersite (the Korea Climate Observatory at Gosan) in East Asia
413	during the summer. Pavuluri et al. (2016) have reported that the average $\delta^{13}C$ values of C_2
414	from biogenic aerosols are higher than those from anthropogenic aerosols. The relatively
415	higher $\delta^{13}C$ values of C_2 observed in Mt. Tai further demonstrate that the contribution of
416	biogenic sources to C ₂ and related SOA is more significant than anthropogenic sources,

oxidation such as 2-methylglyceric acid, which can be oxidized into Gly and mGly and then

417	which is consistent with our discussion above. The average $\delta^{13}C$ values of C_4 are more
418	negative than C_2 and C_3 (Fig. 7). Such a phenomenon is also observed in other regions
419	(Aggarwal and Kawamura, 2008; Wang et al., 2012; Zhang et al., 2016). Photochemical
420	decomposition (or breakdown) of longer-chain diacarboxylic acids (e.g. C ₃ or C ₄) in aerosol
421	aqueous phase can form C_2 (Wang et al., 2017), during which C_3 or C_4 release CO_2/CO by
422	reaction with OH radical and other oxidants, resulting in C_2 more enriched in ${}^{13}C$ due to
423	kinetic isotope effects (KIE) (Wang et al., 2012). The 13 C enrichment in C ₂ is more
424	distinguished in daytime than in nighttime (Table 5 and Fig. 7), largely due to the enhanced
425	photochemical oxidation. However, such diurnal variation was not found for C_3 and C_4 .
426	ωC_2 is an important intermediate of aqueous phase photochemical oxidation of
427	precursors such as Gly, mGly, and Pyr during the C ₂ formation process (Carlton et al., 2006;
428	Fu et al., 2008; Wang et al., 2012). Thus, the mass ratios of $C_2/\omega C_2$, C_2/Gly and $C_2/mGly$ are
429	indicative of organic aerosol aging (Wang et al., 2017). As shown in Fig. 8(g-i), $\delta^{13}C$ values
430	of C_2 correlate robustly with C_2 /Gly, C_2 /mGly, and C_2 /total diacids, suggesting an
431	enrichment of ^{13}C during the organic aerosol ageing process. During the campaign, ωC_2 is
432	less enriched in ¹³ C in comparison with Gly, mGly, and Pyr, because lighter isotope (¹² C) is
433	preferentially enriched in the products due to KIEs during the aqueous phase irreversible
434	chemical reactions (Wang et al., 2012). As one of the major precursors of Gly, isoprene
435	emitted directly from vegetation is depleted in 13 C with a range from -32% to -27% (Affek
436	and Yakir, 2003), but during the transport process isoprene could gradually be enriched with
437	13 C (δ^{13} C value=-16.8‰) due to isotope fractionation associated with the reaction with OH
438	radical (Rudolph et al., 2003). Moreover, chamber experiments have pointed out that
439	β -pinene is preferably enriched with ¹³ C during its ozonolysis due to KIE (Fisseha et al.,
440	2009). Therefore, the relatively higher values of Gly and mGly can be attributed to the
441	secondary formation from the oxidation of isoprene and other biogenic precursors with
442	stronger enrichment of ¹³ C.
443	4. Summary and conclusions

444	$PM_{2.5}$ aerosols from the summit of Mt. Tai (15340 m a.s.l) in the North China Plain
445	during the summer of 2016 were analyzed for dicarboxylic acids, ketocarboxylic acids,
446	α -dicarbonyls, EC, OC and WSOC. Molecular compositions of dicarboxylic acids and
447	related compounds in the forested highland are similar to those on the ground surface and
448	other mountainous regions. The concentrations of total dicarboxylic acids and
449	ketocarboxylic acids are higher in daytime than those in daytime, but α -dicarbonyls presents
450	lower values in daytime, suggesting the mountainous atmospheric environment is more
451	photochemically aged in daytime than in nighttime. The concentrations of oxalic acid and
452	BSOA traces and the mass ratios of C_2/Gly , $C_2/mGly$, and $C_2/total diacids correlate$
453	positively with O_3 concentrations in the daytime during the campaign, but such correlations
454	were not found at night, suggesting that in the mountaintop atmosphere O ₃ oxidation is the
455	major formation pathway of oxalic acid and related SOA in daytime. Moreover, $\mathrm{C}_2,\mathrm{C}_2/\text{total}$
456	diacids ratios and BSOA tracers correlate strongly with temperatures, because higher
457	temperature conditions can enhance the emissions of BVOCs and further promote the
458	photochemical formation of C_2 . C_2 has a robust correlation with pH_{IS} and SO_4^{2-} during the
459	whole sampling period, indicating that acidic conditions can favor the formation of oxalic
460	acid in aqueous phase.
461	A significant enrichment of ¹³ C in dicarboxylic aicds was observed as a function of
462	their carbon number. The observed larger $\delta^{13}C$ values of lower carbon numbered
463	dicarboxylic acids can be explained by isotopic fractionations resulting from the
464	atmospheric decomposition of relatively longer chain-diacids or their precursors. Increased
465	$\delta^{13}C$ values of C_2 relative to C_2 /Gly and C_2 /mGly ratios also suggested an important effect
466	of photochemical aging on the stable carbon isotopic composition of dicarboxylic acids.
467	
468	Acknowledgements

This work was supported by China National Science Funds (Grant No. 41505112 and
41773117), Natural Science Foundation of Shandong Province (Grant No. BS2015HZ002),
the China National Natural Science Funds for Distinguished Young Scholars (No.41325014)
and Open Funds of State Key Laboratory of Loess and Quaternary Geology, Institute of

473	Earth Environment, Chinese Academy of Sciences (Grant Nos. SKLLQG1509 and
474	SKLLQG1504).
475	
476	References
477	Affek, H. P., and Yakir, D.: Natural Abundance Carbon Isotope Composition of Isoprene Reflects Incomplete
478	Coupling between Isoprene Synthesis and Photosynthetic Carbon Flow, Plant Physiology, 131, 1727,
479	2003.
480	Aggarwal, S. G., and Kawamura, K.: Molecular distributions and stable carbon isotopic compositions of
481	dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for
482	photochemical aging during long-range atmospheric transport, J. Geophys. Res., 113, D14301,
483	10.1029/2007jd009365, 2008.
484	Bikkina, S., Kawamura, K., and Sarin, M.: Secondary Organic Aerosol Formation over Coastal Ocean:
485	Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds, Environmental
486	Science & Technology, 51, 4347-4357, 10.1021/acs.est.6b05986, 2017.
487	Bilde, M., Barsanti, K., Booth, M., Cappa, C. D., Donahue, N. M., Emanuelsson, E. U., McFiggans, G.,
488	Krieger, U. K., Marcolli, C., Topping, D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither, B.,
489	Hallquist, M., Hallquist, Å. M., Khlystov, A., Kulmala, M., Mogensen, D., Percival, C. J., Pope, F., Reid,
490	J. P., Ribeiro da Silva, M. A. V., Rosenoern, T., Salo, K., Soonsin, V. P., Yli-Juuti, T., Prisle, N. L.,
491	Pagels, J., Rarey, J., Zardini, A. A., and Riipinen, I.: Saturation Vapor Pressures and Transition Enthalpies
492	of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex
493	Mixtures, Chemical Reviews, 115, 4115-4156, 10.1021/cr5005502, 2015.
494	Boreddy, S. K. R., Kawamura, K., and Tachibana, E.: Long-term (2001–2013) observations of water-soluble
495	dicarboxylic acids and related compounds over the western North Pacific: trends, seasonality and source
496	apportionment, Scientific Reports, 7, 8518, 10.1038/s41598-017-08745-w, 2017.
497	Carlton, A. G., Turpin, B. J., Lim, HJ., Altieri, K. E., and Seitzinger, S.: Link between isoprene and
498	secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds,
499	Geophysical Research Letters, 33, L06822, 10.1029/2005gl025374, 2006.
500	Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A., Lim, HJ., and Ervens, B.: Atmospheric
501	oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments,
502	Atmospheric Environment, 41, 7588-7602, http://dx.doi.org/10.1016/j.atmosenv.2007.05.035, 2007.
503	Cheng, C., Wang, G., Zhou, B., Meng, J., Li, J., Cao, J., and Xiao, S.: Comparison of dicarboxylic acids and
504	related compounds in aerosol samples collected in Xi'an, China during haze and clean periods,
505	Atmospheric Environment, 81, 443-449, http://dx.doi.org/10.1016/j.atmosenv.2013.09.013, 2013.
506	Cheng, C., Wang, G., Meng, J., Wang, Q., Cao, J., Li, J., and Wang, J.: Size-resolved airborne particulate
507	oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China,
508	Atmospheric Research, 161-162, 134-142, http://dx.doi.org/10.1016/j.atmosres.2015.04.010, 2015.
509	Cheng, C., Li, M., Chan, C. K., Tong, H., Chen, C., Chen, D., Wu, D., Li, L., Wu, C., Cheng, P., Gao, W.,
510	Huang, Z., Li, X., Zhang, Z., Fu, Z., Bi, Y., and Zhou, Z.: Mixing state of oxalic acid containing particles
511	in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid,
512	Atmos. Chem. Phys., 17, 9519-9533, 10.5194/acp-17-9519-2017, 2017.

512	
513	Chow, J. C., Watson, J. G., Chen, L. W. A., Arnott, W. P., Moosmüller, H., and Fung, K.: Equivalence of
514	Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature
515	Protocols, Environmental Science & Technology, 38, 4414-4422, 10.1021/es034936u, 2004.
516	Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae,
517	M. O., Artaxo, P., and Maenhaut, W.: Formation of Secondary Organic Aerosols Through Photooxidation
518	of Isoprene, Science, 303, 1173-1176, 10.1126/science.1092805, 2004.
519	Deshmukh, D. K., Kawamura, K., Deb, M. K., and Boreddy, S. K. R.: Sources and formation processes of
520	water-soluble dicarboxylic acids, ω -oxocarboxylic acids, α -dicarbonyls, and major ions in summer
521	aerosols from eastern central India, Journal of Geophysical Research: Atmospheres, 122, 3630-3652,
522	10.1002/2016jd026246, 2017.
523	Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann,
524	R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, IH., Rissanen, M., Jokinen, T., Schobesberger, S.,
525	Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G.,
526	Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, VM., Kulmala, M.,
527	Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol,
528	Nature, 506, 476, 10.1038/nature13032, 2014.
529	Ervens, B., Sorooshian, A., Lim, Y. B., and Turpin, B. J.: Key parameters controlling OH-initiated formation
530	of secondary organic aerosol in the aqueous phase (aqSOA), Journal of Geophysical Research:
531	Atmospheres, 119, 3997-4016, 10.1002/2013jd021021, 2014.
532	Fick, J., Pommer, L., Nilsson, C., and Andersson, B.: Effect of OH radicals, relative humidity, and time on the
533	composition of the products formed in the ozonolysis of α -pinene, Atmospheric Environment, 37,
534	4087-4096, https://doi.org/10.1016/S1352-2310(03)00522-3, 2003.
535	Fisseha, R., Spahn, H., Wegener, R., Hohaus, T., Brasse, G., Wissel, H., Tillmann, R., Wahner, A., Koppmann,
536	R., and Kiendler-Scharr, A.: Stable carbon isotope composition of secondary organic aerosol from
537	β-pinene oxidation, Journal of Geophysical Research: Atmospheres, 114, n/a-n/a, 10.1029/2008jd011326,
538	2009.
539	Fu, P., Kawamura, K., Kanaya, Y., and Wang, Z.: Contributions of biogenic volatile organic compounds to the
540	formation of secondary organic aerosols over Mt. Tai, Central East China, Atmospheric Environment, 44,
541	4817-4826, http://dx.doi.org/10.1016/j.atmosenv.2010.08.040, 2010.
542	Fu, P., Kawamura, K., Usukura, K., and Miura, K.: Dicarboxylic acids, ketocarboxylic acids and glyoxal in the
543	marine aerosols collected during a round-the-world cruise, Marine Chemistry, 148, 22-32,
544	http://dx.doi.org/10.1016/j.marchem.2012.11.002, 2013.
545	Fu, TM., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of
546	atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J.
547	Geophys. Res., 113, D15303, 10.1029/2007jd009505, 2008.
548	Gao, S., Ng, N. L., Keywood, M., Varutbangkul, V., Bahreini, R., Nenes, A., He, J., Yoo, K. Y., Beauchamp, J.
549	L., Hodyss, R. P., Flagan, R. C., and Seinfeld, J. H.: Particle Phase Acidity and Oligomer Formation in
550	Secondary Organic Aerosol, Environmental Science & Technology, 38, 6582-6589, 10.1021/es049125k,
551	2004.
552	Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue,
553	N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M.,
554	Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod,

555	A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties
556	and impact of secondary organic aerosol: current and emerging issues, Atmospheric Chemistry and
557	Physics, 9, 5155-5236, 2009.
558	Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., and Akimoto, H.: Mechanism for the formation of gaseous
559	and particulate products from ozone-cycloalkene reactions in air, Environmental Science & Technology,
560	21, 52-57, 10.1021/es00155a005, 1987.
561	He, N., Kawamura, K., Okuzawa, K., Pochanart, P., Liu, Y., Kanaya, Y., and Wang, Z. F.: Diurnal and
562	temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the
563	northern vicinity of Beijing: Implication for photochemical aging during atmospheric transport, Science of
564	The Total Environment, 499, 154-165, <u>http://dx.doi.org/10.1016/j.scitotenv.2014.08.050</u> , 2014.
565	Hegde, P., and Kawamura, K .: Seasonal variations of water-soluble organic carbon, dicarboxylic acids,
566	ketocarboxylic acids, and α -dicarbonyls in Central Himalayan aerosols, Atmos. Chem. Phys., 12,
567	6645-6665, 10.5194/acp-12-6645-2012, 2012.
568	Herrmann, H., Ervens, B., Nowacki, P., Wolke, R., and Zellner, R.: A chemical aqueous phase radical
569	mechanism for tropospheric chemistry, Chemosphere, 38, 1223-1232,
570	https://doi.org/10.1016/S0045-6535(98)00520-7, 1999.
571	Ho, K. F., Lee, S. C., Cao, J. J., Kawamura, K., Watanabe, T., Cheng, Y., and Chow, J. C.: Dicarboxylic acids,
572	ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong, Atmospheric Environment,
573	40, 3030-3040, http://dx.doi.org/10.1016/j.atmosenv.2005.11.069, 2006.
574	Ho, K. F., Cao, J. J., Lee, S. C., Kawamura, K., Zhang, R. J., Chow, J. C., and Watson, J. G.: Dicarboxylic
575	acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China, Journal of Geophysical
576	Research: Atmospheres, 112, D22S27, 10.1029/2006jd008011, 2007.
577	Hoque, M. M. M., Kawamura, K., and Uematsu, M.: Spatio-temporal distributions of dicarboxylic acids,
578	ω -oxocarboxylic acids, pyruvic acid, α -dicarbonyls and fatty acids in the marine aerosols from the North
579	and South Pacific, Atmospheric Research, 185, 158-168, http://dx.doi.org/10.1016/j.atmosres.2016.10.022,
580	2017.
581	Huang, D., Zhang, X., Chen, Z. M., Zhao, Y., and Shen, X. L.: The kinetics and mechanism of an aqueous
582	phase isoprene reaction with hydroxyl radical, Atmos. Chem. Phys., 11, 7399-7415,
583	10.5194/acp-11-7399-2011, 2011.
584	Jung, J., Tsatsral, B., Kim, Y. J., and Kawamura, K.: Organic and inorganic aerosol compositions in
585	Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids,
586	and α -dicarbonyls, Journal of Geophysical Research: Atmospheres, 115, D22203, 10.1029/2010jd014339,
587	2010.
588	Kawamura, K., and Kaplan, I. R.: Motor exhaust emissions as a primary source for dicarboxylic acids in Los
589	Angeles ambient air, Environmental Science & Technology, 21, 105-110, 10.1021/es00155a014, 1987.
590	Kawamura, K., and Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban
591	atmosphere, Environmental Science & Technology, 27, 2227-2235, 10.1021/es00047a033, 1993.
592	Kawamura, K., and Usukura, K.: Distributions of low molecular weight dicarboxylic acids in the North Pacific
593	aerosol samples, Journal of Oceanography, 49, 271-283, 10.1007/bf02269565, 1993.
594	Kawamura, K., Kasukabe, H., and Barrie, L. A.: Source and reaction pathways of dicarboxylic acids, ketoacids
595	and dicarbonyls in arctic aerosols: One year of observations, Atmospheric Environment, 30, 1709-1722,
596	http://dx.doi.org/10.1016/1352-2310(95)00395-9, 1996.

597	Kawamura, K., and Watanabe, T.: Determination of Stable Carbon Isotopic Compositions of Low Molecular
598	Weight Dicarboxylic Acids and Ketocarboxylic Acids in Atmospheric Aerosol and Snow Samples,
599	Analytical Chemistry, 76, 5762-5768, 10.1021/ac049491m, 2004.
600	Kawamura, K., Okuzawa, K., Aggarwal, S. G., Irie, H., Kanaya, Y., and Wang, Z.: Determination of gaseous
601	and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal)
602	in the atmosphere at Mt. Tai, Atmos. Chem. Phys., 13, 5369-5380, 10.5194/acp-13-5369-2013, 2013a.
603	Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S. G., Kanaya, Y., and Wang, Z. F.: High abundances
604	of water-soluble dicarboxylic acids, ketocarboxylic acids and α -dicarbonyls in the mountain aerosols over
605	the North China Plain during wheat burning season, Atmos. Chem. Phys., 13, 3695-3734,
606	10.5194/acpd-13-3695-2013, 2013b.
607	Kawamura, K., and Bikkina, S.: A review of dicarboxylic acids and related compounds in atmospheric aerosols:
608	Molecular distributions, sources and transformation, Atmospheric Research, 170, 140-160,
609	http://dx.doi.org/10.1016/j.atmosres.2015.11.018, 2016.
610	Kroll, J. H., and Seinfeld, J. H.: Chemistry of secondary organic aerosol: Formation and evolution of
611	low-volatility organics in the atmosphere, Atmospheric Environment, 42, 3593-3624,
612	https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
613	Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O.: Diurnal variation in the
614	water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in
615	biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil, Journal of Aerosol
616	Science, 41, 118-133, http://dx.doi.org/10.1016/j.jaerosci.2009.08.006, 2010a.
617	Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O.: Molecular distributions of
618	dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols:
619	implications for photochemical production and degradation in smoke layers, Atmos. Chem. Phys., 10,
620	2209-2225, 10.5194/acp-10-2209-2010, 2010b.
621	Kunwar, B., Torii, K., and Kawamura, K.: Springtime influences of Asian outflow and photochemistry on the
622	distributions of diacids, oxoacids and α -dicarbonyls in the aerosols from the western North Pacific Rim,
623	Tellus B: Chemical and Physical Meteorology, 69, 1369341, 10.1080/16000889.2017.1369341, 2017.
624	Leaitch, W. R., Li, S. M., Liu, P. S. K., Banic, C. M., Macdonald, A. M., Isaac, G. A., Couture, M. D., and
625	Strapp, J. W.: Relationships among ccn, aerosol size distribution and ion chemistry from airborne
626	measurements over the bay of fundy in august-september, 1995 A2 - Kulmala, Markku, in: Nucleation
627	and Atmospheric Aerosols 1996, edited by: Wagner, P. E., Pergamon, Amsterdam, 840-843, 1996.
628	Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.:
629	Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes,
630	Journal of Geophysical Research: Atmospheres, 111, n/a-n/a, 10.1029/2006jd007050, 2006.
631	Li, J. J., Wang, G. H., Cao, J. J., Wang, X. M., and Zhang, R. J.: Observation of biogenic secondary organic
632	aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects,
633	Atmos. Chem. Phys., 13, 11535-11549, 10.5194/acp-13-11535-2013, 2013.
634	Li, J., Wang, G., Wu, C., Cao, C., Ren, Y., Wang, J., Li, J., Cao, Jj., Zeng, L., and Zhu, T.: Characterization
635	of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for
636	anthropogenic pollution effects, Scientific Reports, 8, 535, DOI: 510.1038/s41598-41017-18983-41597,
637	2018.

638	Lim, HJ., Carlton, A. G., and Turpin, B. J.: Isoprene Forms Secondary Organic Aerosol through Cloud
639	Processing: Model Simulations, Environmental Science & Technology, 39, 4441-4446,
640	10.1021/es048039h, 2005.
641	McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic
642	Aerosols, Environmental Science & Technology, 49, 1237-1244, 10.1021/es5043707, 2015.
643	Meng, J., Wang, G., Li, J., Cheng, C., and Cao, J.: Atmospheric oxalic acid and related secondary organic
644	aerosols in Qinghai Lake, a continental background site in Tibet Plateau, Atmospheric Environment, 79,
645	582-589, http://dx.doi.org/10.1016/j.atmosenv.2013.07.024, 2013.
646	Meng, J., Wang, G., Li, J., Cheng, C., Ren, Y., Huang, Y., Cheng, Y., Cao, J., and Zhang, T.: Seasonal
647	characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua, central China:
648	Implications for sources and formation mechanisms, Science of The Total Environment, 493, 1088-1097,
649	http://dx.doi.org/10.1016/j.scitotenv.2014.04.086, 2014.
650	Miyazaki, Y., Aggarwal, S. G., Singh, K., Gupta, P. K., and Kawamura, K.: Dicarboxylic acids and
651	water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation
652	processes, Journal of Geophysical Research: Atmospheres, 114, D19206, 10.1029/2009jd011790, 2009.
653	Mkoma, S. L., Kawamura, K., and Tachibana, E.: Stable carbon isotopic compositions of
654	low-molecular-weight dicarboxylic acids, glyoxylic acid and glyoxal in tropical aerosols: implications for
655	photochemical processes of organic aerosols, Tellus B: Chemical and Physical Meteorology, 66, 23702,
656	10.3402/tellusb.v66.23702, 2014.
657	Mochizuki, T., Kawamura, K., Miyazaki, Y., Wada, R., Takahashi, Y., Saigusa, N., and Tani, A.: Secondary
658	formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern
659	slope of Mt. Fuji, Atmospheric Environment, 166, 255-262,
660	https://doi.org/10.1016/j.atmosenv.2017.07.028, 2017.
661	Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., and
662	Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study, Atmos.
663	Chem. Phys., 11, 5761-5782, 10.5194/acp-11-5761-2011, 2011.
664	Narukawa, M., Kawamura, K., Takeuchi, N., and Nakajima, T.: Distribution of dicarboxylic acids and carbon
665	isotopic compositions in aerosols from 1997 Indonesian forest fires, Geophysical Research Letters, 26,
666	3101-3104, 10.1029/1999gl010810, 1999.
667	Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM2.5 ionic species in four major cities of China:
668	nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711-1722,
669	10.5194/acp-9-1711-2009, 2009.
670	Pavuluri, C. M., Kawamura, K., and Swaminathan, T.: Water-soluble organic carbon, dicarboxylic acids,
671	ketoacids, and α-dicarbonyls in the tropical Indian aerosols, Journal of Geophysical Research:
672	Atmospheres, 115, D11302, 10.1029/2009jd012661, 2010.
673	Pavuluri, C. M., and Kawamura, K.: Enrichment of (13)C in diacids and related compounds during
674	photochemical processing of aqueous aerosols: New proxy for organic aerosols aging, Scientific Reports,
675	6, 36467, 10.1038/srep36467, 2016.
676	Rapf, R. J., Dooley, M. R., Kappes, K., Perkins, R. J., and Vaida, V.: pH Dependence of the Aqueous
677	Photochemistry of α-Keto Acids, The Journal of Physical Chemistry A, 121, 8368-8379,
678	10.1021/acs.jpca.7b08192, 2017.

679	Rudolph, J., Anderson, R. S., Czapiewski, K. V., Czuba, E., Ernst, D., Gillespie, T., Huang, L., Rigby, C., and
680	Thompson, A. E.: The Stable Carbon Isotope Ratio of Biogenic Emissions of Isoprene and the Potential
681	Use of Stable Isotope Ratio Measurements to Study Photochemical Processing of Isoprene in the
682	Atmosphere, Journal of Atmospheric Chemistry, 44, 39-55, 10.1023/a:1022116304550, 2003.
683	Sorooshian, A., Lu, ML., Brechtel, F. J., Jonsson, H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.: On the
684	Source of Organic Acid Aerosol Layers above Clouds, Environmental Science & Technology, 41,
685	4647-4654, 10.1021/es0630442, 2007a.
686	Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.: Particulate organic
687	acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico
688	Atmospheric Composition and Climate Study (GoMACCS), J. Geophys. Res., 112, D13201,
689	10.1029/2007jd008537, 2007b.
690	Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., and Seinfeld, J.
691	H.: Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene, Environmental Science &
692	Technology, 41, 5363-5369, 10.1021/es0704176, 2007.
693	Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R.
694	C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol
695	formation from isoprene, Proceedings of the National Academy of Sciences, 107, 6640-6645,
696	10.1073/pnas.0911114107, 2010.
697	Tan, Y., Carlton, A. G., Seitzinger, S. P., and Turpin, B. J.: SOA from methylglyoxal in clouds and wet
698	aerosols: Measurement and prediction of key products, Atmospheric Environment, 44, 5218-5226,
699	http://dx.doi.org/10.1016/j.atmosenv.2010.08.045, 2010.
700	Wang, G., Kawamura, K., Umemoto, N., Xie, M., Hu, S., and Wang, Z.: Water-soluble organic compounds in
701	PM2.5 and size-segregated aerosols over Mount Tai in North China Plain, Journal of Geophysical
702	Research: Atmospheres, 114, D19208, 10.1029/2008jd011390, 2009.
703	Wang, G., Xie, M., Hu, S., Gao, S., Tachibana, E., and Kawamura, K.: Dicarboxylic acids, metals and isotopic
704	compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal
705	burning emission and secondary aerosol formation, Atmos. Chem. Phys., 10, 6087-6096,
706	10.5194/acp-10-6087-2010, 2010.
707	Wang, G., Kawamura, K., Cheng, C., Li, J., Cao, J., Zhang, R., Zhang, T., Liu, S., and Zhao, Z.: Molecular
708	Distribution and Stable Carbon Isotopic Composition of Dicarboxylic Acids, Ketocarboxylic Acids, and
709	α -Dicarbonyls in Size-Resolved Atmospheric Particles From Xi'an City, China, Environmental Science &
710	Technology, 46, 4783-4791, 10.1021/es204322c, 2012.
711	Wang, G., Cheng, C., Meng, J., Huang, Y., Li, J., and Ren, Y.: Field observation on secondary organic aerosols
712	during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust
713	surface, Atmospheric Environment, 113, 169-176, http://dx.doi.org/10.1016/j.atmosenv.2015.05.013,
714	2015.
715	Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J.,
716	Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P.,
717	Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y.,
718	Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S.,
719	Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese

720	haze, Proceedings of the National Academy of Sciences, 113, 13630-13635, 10.1073/pnas.1616540113,
721	2016.
722	Wang, G. H., Niu, S. L., Liu, C., and Wang, L. S.: Identification of dicarboxylic acids and aldehydes of PM10
723	and PM2.5 aerosols in Nanjing, China, Atmospheric Environment, 36(12), 1941-1950, 2002.
724	Wang, J., Wang, G., Gao, J., Wang, H., Ren, Y., Li, J., Zhou, B., Wu, C., Zhang, L., Wang, S., and Chai, F.:
725	Concentrations and stable carbon isotope compositions of oxalic acid and related SOA in Beijing before,
726	during, and after the 2014 APEC, Atmos. Chem. Phys., 17, 981-992, 10.5194/acp-17-981-2017, 2017.
727	Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere,
728	Atmospheric Environment, 37, 2423-2427, http://dx.doi.org/10.1016/S1352-2310(03)00136-5, 2003.
729	Yang, X., Xue, L., Yao, L., Li, Q., Wen, L., Zhu, Y., Chen, T., Wang, X., Yang, L., Wang, T., Lee, S., Chen, J.,
730	and Wang, W .: Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and
731	effects on ozone formation, Atmospheric Research, 196, 53-61,
732	https://doi.org/10.1016/j.atmosres.2017.06.005, 2017.
733	Yu, J. Z., Huang, XF., Xu, J., and Hu, M.: When Aerosol Sulfate Goes Up, So Does Oxalate: Implication for
734	the Formation Mechanisms of Oxalate, Environmental Science & Technology, 39, 128-133,
735	10.1021/es049559f, 2005.
736	Zhang, H., Surratt, J. D., Lin, Y. H., Bapat, J., and Kamens, R. M.: Effect of relative humidity on SOA
737	formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding
738	oligoesters under dry conditions, Atmos. Chem. Phys., 11, 6411-6424, 10.5194/acp-11-6411-2011, 2011.
739	Zhang, YL., Kawamura, K., Cao, F., and Lee, M.: Stable carbon isotopic compositions of
740	low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α -dicarbonyls, and fatty acids:
741	Implications for atmospheric processing of organic aerosols, Journal of Geophysical Research:
742	Atmospheres, 121, 3707-3717, 10.1002/2015jd024081, 2016.
743	Zhu, Y., Yang, L., Chen, J., Kawamura, K., Sato, M., Tilgner, A., van Pinxteren, D., Chen, Y., Xue, L., Wang,
744	X., Herrmann, H., and Wang, W.: Molecular distributions of dicarboxylic acids, oxocarboxylic acids, and
745	α-dicarbonyls in PM2.5 collected at Mt. Tai, in North China in 2014, Atmos. Chem. Phys. Discuss., 2018,
746	1-31, 10.5194/acp-2017-1240, 2018.
747	
748	
749	

- 750 Table 1. Meteorological parameters and concentrations of inorganic ions, ozone, water
- soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC), liquid water
- content (LWC), and in-situ pH (pH_{1S}) of PM_{2.5} from Mt. Tai in the summer.

	Daytime (n=28)	Nighttime (n=29)	Total (<i>n</i> =57)				
I. Meteorological parameters and ozone							
Temperature (°C)	23 ± 2.9 (17–28)	19 ± 2.9 (12–25)	21 ± 3.6 (12–28)				
Relative humidity (%)	$92 \pm 5.0 \ (80 - 98)$	77 ± 8.2 (65–193)	84 ± 9.9 (65–98)				
O ₃ (ppb)	32 ± 16 (7.8–61)	22 ± 12 (6.0–48)	27 ± 15 (6.0-61)				
	II. Inorganio	c ions (μg m ⁻³)					
K^+	$0.4 \pm 0.2 \ (0.1 - 0.8)$	$0.4 \pm 0.2 \ (0.1 - 0.7)$	$0.4 \pm 0.2 \ (0.1 - 0.8)$				
Na ⁺	$0.3 \pm 0.1 \ (0.1 - 0.9)$	$0.3 \pm 0.2 \ (0.1 - 1.0)$	$0.3 \pm 0.2 \ (0.1 - 1.0)$				
$\mathrm{NH_4}^+$	5.3 ± 2.9 (0.5–12)	6.6 ± 2.5 (1.2–11)	5.9 ± 2.8 (0.5–12)				
Mg^{2+}	$0.2 \pm 0.1 \ (0-0.3)$	$0.2 \pm 0.1 \ (0.1 - 0.3)$	0.2 ± 0.1 (0-0.3)				
Ca ²⁺	$0.3 \pm 0.1 \ (0-0.5)$	$0.3 \pm 0.2 \ (0.1 - 0.7)$	$0.3 \pm 0.2 \ (0-0.7)$				
NO ₃	$3.0 \pm 2.1 \ (0.1 - 8.4)$	4.2 ± 2.3 (0.9–10)	3.6 ± 2.3 (0.1–10)				
SO4 ²⁻	13 ± 6.9 (3.0–33)	9.6 ± 3.7 (2.9–18)	12 ± 5.8 (2.9–33)				
Subtotal	23 ± 12 (4.6–54)	22 ± 8.2 (6.6–40)	22 ± 10 (4.6–54)				
	III. Other sp	ecies (µg m ⁻³)					
EC	$0.2 \pm 0.2 (0-0.6)$	$0.2 \pm 0.2 \ (0-0.8)$	$0.2 \pm 0.2 \ (0-0.8)$				
OC	2.4 ± 0.8 (1.1-3.9)	2.1 ± 0.3 (1.5-2.8)	2.2 ± 0.6 (1.1-3.9)				
WSOC	$1.9 \pm 0.8 \ (0.8 - 3.6)$	$1.4 \pm 0.5 \ (0.7 - 2.3)$	1.7 ± 0.7 (0.7–3.6)				
pH _{IS}	$-0.04 \pm 0.5 (-0.9 - 1.0)$	$0.4 \pm 0.6 (-1.0 - 1.2)$	$0.2 \pm 0.6 (-1.0 - 1.2)$				
LWC	94 ± 100 (10-313)	75 ± 69 (6.3–199)	84 ± 86 (6.3–313)				
PM _{2.5}	38 ± 19 (6.1–83)	36 ± 14 (11–66)	37 ± 16 (6.1–83)				

753 754

Table 2. Concentrations (ng m⁻³) of dicarboxylic acids, ketocarboxylic acids and 756

Compounds	Doutime (r=29)	Nighttime (u=20)	$T_{otol}(m=57)$			
Compounds	Daytime (<i>n</i> =28)	Nighttime (<i>n</i> =29)	1 otal (n=5/)			
I. Dicarboxylic acids						
Oxalic, C_2	272±190 (11-623)	$156 \pm 105 (34 - 415)$	$213 \pm 162 (11 - 623)$			
Malonic,C ₃	$49 \pm 30 (4.0 - 101)$	31 ±17 (7.4–69)	$40 \pm 26 (4.0 - 101)$			
Succinic, C ₄	$30 \pm 23 \ (2.0 - 83)$	$24 \pm 16 (4.7 - 67)$	$27 \pm 20 \ (2.0 - 83)$			
Glutaric, C ₅	$7.0 \pm 5.5 \ (0.4 - 19)$	$5.6 \pm 3.9 (1.1 - 14)$	$6.3 \pm 4.8 \ (0.4 - 19)$			
Adipic, C ₆	$2.2 \pm 1.7 \ (0.1 - 5.6)$	$2.2 \pm 1.8 \ (0.2 - 7.7)$	$2.2 \pm 1.7 \ (0.1 - 7.7)$			
Pimelic, C ₇	3.0 ±1.9 (0.3-7.3)	$2.9 \pm 1.3 \ (0.3 - 6.1)$	$3.0 \pm 1.6 \ (0.3 - 7.3)$			
Suberic, C ₈	4.3 ± 2.2 (0.9–9.0)	3.8 ± 2.8 (0.4–13)	$4.0 \pm 2.5 \ (0.4 - 13)$			
Azelaic, C ₉	24 ± 14 (4.2–55)	19 ± 8.6 (4.5–41)	$22 \pm 12 (4.2 - 55)$			
Sebacic, C ₁₀	$5.9 \pm 4.3 \ (0.1 - 14)$	$5.6 \pm 2.7 \ (0.7 - 11)$	5.8 ± 3.6 (0.1–14			
Undecanedioic, C ₁₁	$2.4 \pm 1.7 \ (0.2 - 5.8)$	$1.1 \pm 0.8 \ (0-3.8)$	$1.7 \pm 1.4 \ (0-5.8)$			
Methylmalonic, iC4	2.1 ±1.7 (0.1-5.2)	$2.1 \pm 1.5 \ (0-5.3)$	$2.1 \pm 1.6 (0-5.3)$			
Mehtylsuccinic, iC5	$2.7 \pm 2.0 \ (0.1 - 7.1)$	$2.2 \pm 1.7 \ (0.2 - 6.1)$	$2.4 \pm 1.8 \ (0.1 - 7.1)$			
Methyglutaric, iC ₆	2.6 ± 2.1 (0.5–9.1)	$2.3 \pm 1.9 \ (0-9.0)$	2.5 ± 2.0 (0-9.1)			
Maleic, M	2.0 ±1.2 (0.1-4.3)	$3.0 \pm 2.0 \; (0.7 - 8.2)$	$2.5 \pm 1.7 \ (0.1 - 8.2)$			
Fumaric, F	4.2 ± 2.7 (0.2–9.4)	$4.0 \pm 3.0 \ (0.5 - 13)$	4.1 ± 2.8 (0.2–13			
Methylmaleic, mM	2.9 ± 1.7 (0.1–6.6)	2.7 ± 2.1 (0.5–9.9)	2.8 ± 1.9 (0.1–9.9			
Phthalic, Ph	$3.0 \pm 1.5 \ (0.6 - 5.6)$	3.3 ± 2.3 (0.7–11.2)	3.2 ± 1.9 (0.6–11.			
Isophthalic, iPh	$1.6 \pm 1.0 \ (0.1 - 3.3)$	$1.3 \pm 0.8 \ (0.2 - 3.5)$	$1.4 \pm 0.9 \ (0.1 - 3.3)$			
Terephthalic, tPh	$1.9 \pm 1.3 \ (0.1 - 5.0)$	2.4 ±1.5 (0.1-6.1)	$2.2 \pm 1.4 (0.1 - 6.2)$			
Ketomalonic, kC3	$2.6 \pm 1.5 \ (0-5.8)$	$2.7 \pm 1.5 \ (0.5 - 6.4)$	2.7 ± 1.5 (0-6.4			
Ketopimelic, kC7	3.6 ± 2.8 (0.2–9.3)	$3.9 \pm 2.6 \ (0.2 - 12)$	$3.7 \pm 2.7 (0.2 - 12)$			
Subtotal	$430 \pm 282 \; (27 - 944)$	282 ± 161 (73–671)	354 ± 239 (27–94			
	II. Ketocarbo	xylic acids				
Pyruvic, Pyr	14 ± 8.8 (1.4–28)	11 ± 5.5 (2.2–23)	$12 \pm 7.4 (1.4 - 28)$			
Glyoxylic, ωC ₂	18 ± 12 (0.9–38)	15 ± 9.5 (3.5–35)	$16 \pm 11(0.9-38)$			
3-Oxopropanoic, ωC_3	$4.0\pm2.7\;(0.1{-}7.7)$	$4.1 \pm 2.2 \ (0.5 - 8.3)$	$4.1 \pm 2.4 (0.1 - 8.3)$			
4-Oxobutanoic, ωC_4	$2.9 \pm 1.9 \ (0.2 - 6.8)$	$2.5 \pm 1.7 \; (0.6 7.1)$	$2.7 \pm 1.8 (0.2 - 7.3)$			
7-Oxoheptanoic, ωC7	$1.0\pm0.6(0-2.7)$	$1.3 \pm 1.0 \ (0.1 - 4.8)$	$1.2 \pm 0.9 \ (0.0 - 4.8)$			
8-Oxooctanoic, ωC_8	$1.5 \pm 0.9 \ (0.1 - 3.3)$	$1.5 \pm 0.7 \ (0.2 - 3.4)$	$1.5 \pm 0.8 \ (0.1 - 3.4)$			
9-Oxononanoic, ωC ₉	$2.0 \pm 1.4 \ (0.1 - 4.4)$	$1.8 \pm 1.1 \ (0.2 - 4.3)$	$1.9 \pm 1.3 \ (0.1 - 4.4)$			
Subtotal	43 ± 28 (2.9–88)	37 ± 19 (7.6–77)	40 ± 24 (2.9–88)			
	III. α-Dica	rbonyls				
Glyoxal, Gly	3.1 ± 1.8 (0.3–6.0)	4.6 ± 2.6 (0.4–12)	$3.8 \pm 2.3 \ (0.3 - 12)$			
Methyglyoxal, mGly	16 ± 9.5 (1.8–33)	22 ± 15 (1.4–62)	19 ± 13 (1.4–62			
Subtotal	19±11 (2.6–39)	27 ± 17 (2.1–69)	23 ± 15 (2.1–69)			
Total detected	$491 \pm 320 (33 - 1060)$	346 ± 194 (96-807)	417 ± 271 (33-106			

the global budgets of atmospheric Gly and mGly.

		Abun	Mass ratio	
Site	Sources/Season	Gly	mGly	Gly/mGly
Global budget	Biogenic	22.8 ^a	113.5 ^a	1:5
$(Tg a^{-1})^{-1}$	Anthropogenic	22.2 ^a	26.5 ^a	1:1
Mt. Hua	Biogenic, Summer	2.3 ^b	10 ^b	1:4.4
(ngm ⁻³)	Anthropogenic, Winter	8.8 ^b	1.3 ^b	1:1.5
Mt. Tai	Summer, Daytime	3.1	15.8	1:5.1
(ngm ⁻³ , this study)	Summer, Nighttime	4.6	22.1	1:4.8

761 Note: ^a Data are calculated from Fu et al., 2008;

762 ^b Data are cited from Meng et al., 2014.

763

Table 4. Correlation coefficients (*R*) matrix among major low molecular weight dicarboxylic

acids and related SOA, BSOA tracers, temperature (T), and O₃ concentrations in Mt. Tai

766 during the summer campaign.

	C_2	C_3	C_4	ωC_2	Pyr	Gly	mGly	O_3	Т
			(a	ı) Daytime					
2-methylglyceric acid	0.98 ^a	0.96 ^a	0.86 ^a	0.95 ^a	0.73 ^a	0.96 ^a	0.94 ^a	0.92 ^a	0.85 ^a
2-methylthreitol	0.83 ^a	0.80 ^a	0.64 ^a	0.74 ^a	0.77 ^a	0.77 ^a	0.82 ^a	0.85 ^a	0.72 ª
2-methylerthritol	0.84 ^a	0.87 ^a	0.70 ^a	0.78 ^a	0.83 ^a	0.83 ^a	0.84 ^a	0.80 ^a	0.71 ^a
cis-pinonic acid	0.83 ^a	0.75 ^a	0.73 ^a	0.75 ^a	0.74 ^a	0.71 ^a	0.77 ^a	0.80 ^a	0.72 ^a
3-hydroxyglutaric acid	0.81 ^a	0.76 ^a	0.69 ^a	0.74^{a}	0.78^{a}	0.74^{a}	0.73 ^a	0.73 ^a	0.75 ª
MBTCA	0.84 ^a	0.77 ^a	0.83 ^a	0.82 ^a	0.75 ^a	0.74^{a}	0.77 ^a	0.82 ^a	0.67 ^a
β -Caryophyllinic acid	0.75 ^a	0.70 ^a	0.79 ^a	0.70 ^a	0.70 ^a	0.71 ^a	0.72 ^a	0.65 ^a	0.57ª
			(b)) Nighttim	e				
2-methylglyceric acid	0.87 ^a	0.72 ^a	0.74 ^a	0.70 ^a	0.64 ^a	0.44 ^b	0.51ª	0.09	0.59ª
2-methylthreitol	0.81 ^a	0.71 ^a	0.58 ^a	0.71 ^a	0.66 ^a	0.60 ^a	0.47 ^b	0.05 ^a	0.65 ª
2-methylerthritol	0.83 ^a	0.72 ^a	0.62 ^a	0.79 ^a	0.73 ^a	0.67^{a}	0.61 ^a	0.23	0.74 ^a
cis-pinonic acid	0.83 ^a	0.65 ^a	0.57 ^a	0.75 ^a	0.61 ^a	0.56 ^a	0.54 ^a	0.22	0.63 ª
3-hydroxyglutaric acid	0.79 ^a	0.62 ^a	0.69 ^a	0.71 ^a	0.60 ^a	0.58 ^a	0.50 ^a	0.43 ^b	0.62 ^a
MBTCA ^c	0.82 ^a	0.80 ^a	0.78 ^a	0.73 ^a	0.75 ^a	0.61 ^a	0.55 ^a	0.30	0.60 ª
β-caryophyllinic acid	0.68 ^a	0.74 ^a	0.61 ^a	0.73 ^a	0.71 ^a	0.73 ^a	0.58 ^a	0.32 ^a	0.53 ª

^{767 &}lt;sup>a</sup> P<0.01; ^b P<0.05.

768 °MBTCA: 3-Methyl-1,2,3-butanetricarboxylic acid.

769

770

771

772

Table 5. Stable carbon isotopic compositions ($\delta^{13}C$, ‰) of major dicarboxylic acids and

related SOA in $PM_{2.5}$ of Mt. Tai in the North	China Plain.
---	--------------

Compounds	Daytime (n=28)	Nighttime (n=29)	Total (<i>n</i> =57)					
I. Dicarboxylic acids								
Oxalic, C ₂	-15.8±1.9 (-19.4 to -13.0)	-17.2±1.7 (-20.1 to -12.1)	-16.5±1.9 (-20.1 to -12.1)					
Malonic,C ₃	-19.1±2.3 (-23.8 to-15.9)	-18.5±1.8 (-21.1 to-15.3)	-18.8±2.0 (-23.8 to-15.3)					
Succinic, C ₄	-22.0±2.3 (-25.6 to-18.5)	-21.4±2.2 (-24.6 to -18.4)	-21.7±2.2 (-25.6 to -18.4)					
Adipic, C ₆	-23.7±2.5 (-27.3 to -19.9)	-24.8±2.4 (-27.9 to -21.4)	-24.2±2.5 (-27.9 to -19.9)					
Azelaic, C9	-24.7±2.6 (-28.7 to-21.0)	-25.7±2.7 (-30.3 to-21.9)	-25.2±2.7 (-30.3 to -21.0)					
Phthalic, Ph	-24.3±2.5 (-28.1 to-20.6)	-25.2±2.6 (-29.2 to-20.9)	-24.8±2.5 (-29.2 to -20.6)					
II. Ketocarboxylic aci	ds							
Pyruvic, Pyr	-19.4±2.1 (-23.1 to -16.5)	-21.2±2.2 (-24.5 to -17.8)	-20.3±2.3 (-24.5 to -16.5)					
Glyoxylic, ωC_2	-18.6.8±1.9 (-21.5 to -15.6)	-20.2±2.1 (-23.1 to-16.9)	-19.4±2.2 (-23.1 to-15.6)					
3-Oxopropanoic, ωC_3	-20.2±2.1 (-23.5 to-17.0)	-24.0±2.5 (-27.7 to - 20.8)	-22.2±3.0 (-27.7 to-17.0)					
III. α-Dicarbonyls								
Glyoxal, Gly	-16.7±1.7 (-19.4 to-14.0)	-18.1±1.8(-21.3 to -15.2)	-17.4±1.9 (-21.3 to -14.0)					
Methyglyoxal, mGly	-17.9±1.8 (-21.0 to-15.0)	-19.6±2.0 (-22.5 to-16.5)	-18.8±2.1 (-22.5 to-15.0)					

Fig.1. Location of the sampling site (Mt. Tai; 36.25° N, 117.10°E; 1534 m a.s.l.).
780

783 Tai in North China Plain.

784

785 Fig.3. Diurnal variations of relative humidity (RH), temperature (T), in-situ acidity of

particles (pH₁₅), liquid water content of particles (LWC), concentrations of O₃, PM_{2.5},

787 α -dicarbonyls, ketocarboxylic acids, and dicarboxylic acids (rainy days are highlighted in shadow).

790

Fig.4. Diurnal variations of mass ratios of OC/EC, WSOC/OC, C₂/C₄, C₃/C₄, C₂/TD,

792 (TD-C)/OC, C₉/ C₆, C₉/ Ph. (TD: total dicarboxylic acids; TD-C: the carbon concentration of

total dicarboxylic acids; ^a the mass ratios expanding 10 times; ^b the mass ratios expanding
100 times).

795

796

798 (See the abbreviations in Table 1).

799

Fig.6. Linear fit regressions of oxalic acid (C₂) with (**a**) O_3 , (**b**) temperature (T), (**c**) $SO_4^{2^2}$, (**d**)

relative humidity (RH), (e) aerosol liquid water content (LWC), and (f) in-situ acidity of particles (pH_{IS}).

803

804

805 Fig.7. Diurnal variations of stable carbon isotope composition of low molecular weight

806 dicarboxylic acids (C_2 - C_4), the smallest ketocarboxylic acids (ωC_2) and α -dicarbonyls (Gly,

mGly) in $PM_{2.5}$ collected at the summit of Mt. Tai during the summer.

Fig.8. Correlation analysis for the mass ratios of C₂/Gly, C₂/mGly and C₂/TD with (**a-c**) concentrations of O₃; (**d-f**) temperature and (**g-i**) δ^{13} C of C₂ during the daytime and nighttime (C₂/TD: mass ratio of oxalic acid to total dicarboxylic acids; T: temperature).

- 813
- 012
- 814
- 815
- 816